Classification of Multi-Frequency Polarimetric SAR Images Based on Multi-Linear Subspace Learning of Tensor Objects

نویسندگان

  • Chun Liu
  • Junjun Yin
  • Jian Yang
  • Wei Gao
چکیده

One key problem for the classification of multi-frequency polarimetric SAR images is to extract target features simultaneously in the aspects of frequency, polarization and spatial texture. This paper proposes a new classification method for multi-frequency polarimetric SAR data based on tensor representation and multi-linear subspace learning (MLS). Firstly, each cell of the SAR images is represented by a third-order tensor in the frequency, polarization and spatial domains, with each order of tensor corresponding to one domain. Then, two main MLS methods, i.e., multi-linear principal component analysis (MPCA) and multi-linear extension of linear discriminant analysis (MLDA), are used to learn the third-order tensors. MPCA is used to analyze the principal component of the tensors. MLDA is applied to improve the discrimination between different land covers. Finally, the lower dimension subtensor features extracted by the MPCA and MLDA algorithms are classified with a neural network (NN) classifier. The classification scheme is accessed using multi-band polarimetric SAR images (C-, Land P-band) acquired by the Airborne Synthetic Aperture Radar (AIRSAR) sensor of the Jet Propulsion Laboratory (JPL) over the Flevoland area. Experimental results demonstrate that the proposed method has good classification performance in comparison with the classic multi-band Wishart classifier. The overall classification accuracy is close to 99%, even when the number of training samples is small.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ADVANCED CONCEPTS IN POLARIMETRY – PART 2 (Polarimetric Target Classification)

There is currently widespread interest in the development of radar sensors for the detection of surface and buried targets and the remote sensing of land, sea and ice surfaces. An important feature of electromagnetic radiation is its state of polarisation and a wide range of classification algorithms and inversion techniques have recently been developed based on the transformation of polarisati...

متن کامل

Optimum Ensemble Classification for Fully Polarimetric SAR Data Using Global-Local Classification Approach

In this paper, a proposed ensemble classification for fully polarimetric synthetic aperture radar (PolSAR) data using a global-local classification approach is presented. In the first step, to perform the global classification, the training feature space is divided into a specified number of clusters. In the next step to carry out the local classification over each of these clusters, which cont...

متن کامل

Multi-Frequency Polarimetric SAR Classification Based on Riemannian Manifold and Simultaneous Sparse Representation

Normally, polarimetric SAR classification is a high-dimensional nonlinear mapping problem. In the realm of pattern recognition, sparse representation is a very efficacious and powerful approach. As classical descriptors of polarimetric SAR, covariance and coherency matrices are Hermitian semidefinite and form a Riemannian manifold. Conventional Euclidean metrics are not suitable for a Riemannia...

متن کامل

Change Detection in Urban Area Using Decision Level Fusion of Change Maps Extracted from Optic and SAR Images

The last few decades witnessed high urban growth rates in many countries. Urban growth can be mapped and measured by using remote sensing data and techniques along with several statistical measures. The purpose of this research is to detect the urban change that is used for urban planning. Change detection using remote sensing images can be classified into three methods: algebra-based, transfor...

متن کامل

Analysis of Multi-Frequency Polarimetric SAR Data Using Different Classification Techniques

Classification of polarimetric SAR images has become a very important topic after the availability of Polarimetric SAR images through different sensors like SIR-C, ALOS-PALSAR etc. The data over wet regions of India has been processed for classification of various land features like mangrove, ocean water, and clear water. In this study the utility of NASA’s Shuttle Imaging Radar-C (SIR-C) data ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015